Single crystal cells

silicon cells:

basic design fabrication strategies for high efficiency light management minimising resistive losses minimizing recombination losses

GaAs cells

basic design problems special applications

Silicon cells

□ single crystal: efficiency η up to 24.7% (module 22.7%)

 \square multicrystalline: $\eta \sim 20 \%$ (module 15%)

α-Si: η~10%

photovoltaic-grade Si properties:

doping ~ 10^{16} cm⁻³ mobility ~1000 cm²/Vs minority carrier diffusion length 100 µm sheet resistance 0.1 Ω cm² (for d= 500 µm)

indirect bandgap – poor absorption

Monocrystalline silicon

Czochralski process of c-Si growth

boron-doped during growth

Single Crystal Silicon Ingot

d ~15 cm

CZ Crystal Pullers (Mitsubishi Materials Silicon)

Typical Si cell parameters

	emitter	base
	n-type	p-type
thickness	0.5 μm	300 µm
doping	10 ¹⁹ cm ⁻³	10 ¹⁶ cm ⁻³
minority carrier diffusion length	14 μm	140 μm
minority carrier lifetime	10 ⁻⁶ s	5x10 ⁻⁶ s

Problems:

- poor absorption of long-wavelength photons
- rear surface recombination
- series resistance

Optimisation of the cell design

doping vs recombination losses

Optimisation of the cell structure:

Reducing recombination at front and back electrode

passivation of the front surface (oxides, nitrides) high doping close to the electrical contacts

Strategies for high efficiency

□ enhance absorption – antireflective coating, texturing

contacts optimization - buried contacts

□ reduce surface recombination - back surface field, passivation of front and back contacts, rear point contacts

PEARL cell (Passivated Emiter, Rear Locally-Difused) $\eta = 24,4\%$

Maximise absorption - texturing

(a)

Light trapping

Maximise absorption and minimise series resistance

"buried contacts" : minimised shaded area, large contact area

Costs!

buried contacts cell

Minimise back contact recombination

rear point contact cell

- ✓ passivation of the back surface with oxide
- ✓ differential doping close to contacts

Polycrystalline and multicrystalline Si – cost reduction

Multicrystalline grain size ~ layer thickness (mm) 2-3% less efficiency, 80% costs

Methods: casting ribbon growth thin film deposition ...

Polysilicon Ingots

Policrystalline: recombination via grain boundaries important

Single crystal GaAs cell, η **up to 25%**

Space applications

Applications of GaAs-based cells

✓ Space applications:

lightweight,

more radiation-resistant

✓ Under concentrated light:

lower probability of Auger recombination

better thermal coefficient

	Emitter n-type	Base p-type
thickness	0.5 μm	4 μm
doping	10 ¹⁸ cm ⁻³	10 ¹⁷ cm ⁻³
minority carrier diffusion length	1.4 μm	3 μm
minority carrier lifetime	10 ⁻⁹ s	10 ⁻⁸ s

Efficiency increase under concentration

record cells

GaAs 27.6% under 255 suns

Si 26.8% under 90 suns

under concentration optimum bandgap is lower

GaAs is still better than Si:1.lower thermal coefficient2. lower probability of Auger recombination under concentrated light