EIS – INTRODUCTION AND BASIC CONCEPTS

Impedance definition: concept of complex impedance

Almost everyone knows about the concept of electrical resistance. It is the ability of a circuit element to resist the flow of electrical current. Ohm's law  defines resistance in terms of the ratio between voltage E and current I.  R = E / I   

While this is a well known relationship, it's use is limited to only one circuit element -- the ideal resistor. An ideal resistor has several simplifying properties:

· It follows Ohm's Law at all current and voltage levels.

· It's resistance value is independent of frequency.

· AC current and voltage signals keep in phase with each other.

The real world contains circuit elements that exhibit much more complex behavior. These elements force us to abandon the simple concept of resistance. In its place we use impedance, which is a more general circuit parameter. Like resistance, impedance is a measure of the ability of a circuit to resist the flow of electrical current. Unlike resistance, impedance is not limited by the simplifying properties listed above.

Electrochemical impedance is usually measured by applying an AC potential to an electrochemical cell and measuring the current through the cell. Suppose that we apply a sinusoidal potential excitation. The response to this potential is an AC current signal, containing the excitation frequency and it's harmonics. 

Electrochemical Impedance is normally measured using a small excitation signal of 10 to 50 mV. In a linear (or pseudo-linear) system, the current response to a sinusoidal potential will be a sinusoid at the same frequency but shifted in phase. 
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  Figure 1

Sinusoidal Current Response in a Linear System

The excitation signal, expressed as a function of time, has the form
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E(t) is the potential at time tr Eo is the amplitude of the signal, and w is the radial frequency. The relationship between radial frequency ω(expressed in radians/second) and frequency f (expressed in hertz) is:
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In a linear system, the response signal, It, is shifted in phase (φ) and has a different amplitude, Io:
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An expression analogous to Ohm's Law allows us to calculate the impedance of the system as:
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 The impedance is therefore expressed in terms of a magnitude (modulus) │Z│, and a phase shift, φ.

Using Eulers relationship,
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it is possible to express the impedance as a complex function. The potential is described as,
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and the current response as,
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The impedance is then represented as a complex number,
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Data Presentation

Look at last equation  in the previous section. The expression for Z(ω) is composed of a real and an imaginary part. If the real part is plotted on the Z axis and the imaginary part on the Y axis of a chart, we get a "Nyquist plot". See Figure 2. Notice that in this plot the y-axis is negative and that each point on the Nyquist plot is the impedance at one frequency.
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Figure 2

Figure 2-2 has been annotated to show that low frequency data are on the right side of the plot and higher frequencies are on the left. This is true for EIS data where impedance usually falls as frequency rises (this is not true of all circuits).

On the Nyquist plot the impedance can be represented as a vector of length |Z|. The angle between this vector and the x-axis is φ.

Nyquist plots have one major shortcoming. When you look at any data point on the plot, you cannot tell what frequency was used to record that point.

The Nyquist plot in Figure 2 results from the electrical circuit of Figure 3. The semicircle is characteristic of a single "time constant". Electrochemical Impedance plots often contain several time constants. Often only a portion of one or more of their semicircles is seen.

Figure 3
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Another popular presentation method is the "Bode plot". The impedance is plotted with log frequency on the x-axis and both the absolute value of the impedance (|Z| =Z0 ) and phase-shift on the y-axis.

The Bode plot for the electric circuit of Figure 3 is shown in Figure 4. Unlike the Nyquist plot, the Bode plot explicitly shows frequency information.

Figure 4
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Electrical Circuit Elements

EIS data is commonly analyzed by fitting it to an equivalent electrical circuit model. Most of the circuit elements in the model are common electrical elements such as resistors, capacitors, and inductors. To be useful, the elements in the model should have a basis in the physical electrochemistry of the system. As an example, most models contain a resistor that models the cell's solution resistance.

Some knowledge of the impedance of the standard circuit components is therefore quite useful. Table 1 lists the common circuit elements, the equation for their current versus voltage relationship, and their impedance.

Table 1
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Component Current Vs.Voltage Impedance
resistor E= IR Z=R
inductor E =L di/dt Z=jol

capacitor | = C dE/dt Z =1/jaC




Notice that the impedance of a resistor is independent of frequency and has only a real component. Because there is no imaginary impedance, the current through a resistor is always in phase with the voltage.

The impedance of an inductor increases as frequency increases. Inductors have only an imaginary impedance component. As a result, an inductor's current is phase shifted 90 degrees with respect to the voltage.

The impedance versus frequency behavior of a capacitor is opposite to that of an inductor. A capacitor's impedance decreases as the frequency is raised. Capacitors also have only an imaginary impedance component. The current through a capacitor is phase shifted -90 degrees with respect to the voltage.

Serial and Parallel Combinations of Circuit Elements 

Very few electrochemical cells can be modeled using a single equivalent circuit element. Instead, EIS models usually consist of a number of elements in a network. Both serial and parallel combinations of elements occur.

Fortunately, there are simple formulas that describe the impedance of circuit elements in both parallel and series combinations.

Figure 5
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 For linear impedance elements in series you calculate the equivalent impedance from:
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Figure 6
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For linear impedance elements in parallel you calculate the equivalent impedance from:
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Physical Electrochemistry and Equivalent Circuit Elements

Electrolyte Resistance

Solution resistance is often a significant factor in the impedance of an electrochemical cell. A modern 3 electrode potentiostat compensates for the solution resistance between the counter and reference electrodes. However, any solution resistance between the reference electrode and the working electrode must be considered when you model your cell.

The resistance of an ionic solution depends on the ionic concentration, type of ions, temperature and the geometry of the area in which current is carried. In a bounded area with area A and length l carrying a uniform current the resistance is defined as:
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where ρ is the solution resistivity. The conductivity of the solution, κ , is more commonly used in solution resistance calculations. Its relationship with solution resistance is:
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Standard chemical handbooks list κ values for specific solutions. For other solutions, you can calculate k from specific ion conductances. The units for k are siemens per meter (S/m). The siemens is the reciprocal of the ohm, so 1 S = 1/ohm.

Unfortunately, most electrochemical cells do not have uniform current distribution through a definite electrolyte area. The major problem in calculating solution resistance therefore concerns determination of the current flow path and the geometry of the electrolyte that carries the current. A comprehensive discussion of the approaches used to calculate practical resistances from ionic conductances is well beyond the scope of this manual.

Fortunately, you don't usually calculate solution resistance from ionic conductances. Instead, it is found when you fit a model to experimental EIS data.

Double Layer Capacitance

A electrical double layer exists at the interface between an electrode and its surrounding electrolyte. This double layer is formed as ions from the solution "stick on" the electrode surface. Charges in the electrode are separated from the charges of these ions. The separation is very small, on the order of angstroms.

Charges separated by an insulator form a capacitor. On a bare metal immersed in an electrolyte, you can estimate that there will be approximately 20 to 60 µF of capacitance for every cm2 of electrode area.

The value of the double layer capacitance depends on many variables including electrode potential, temperature, ionic concentrations, types of ions, oxide layers, electrode roughness, impurity adsorption, etc.

Charge Transfer Resistance

A  resistance is formed by a single kinetically controlled electrochemical reaction. In this case we have  a single reaction at equilibrium.

Consider a metal substrate in contact with an electrolyte. The metal molecules can electrolytically dissolve into the electrolyte, according to:
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or more generally:
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In the forward reaction in the first equation, electrons enter the metal and metal ions diffuse into the electrolyte. Charge is being transferred.

This charge transfer reaction has a certain speed. The speed depends on the kind of reaction, the temperature, the concentration of the reaction products and the potential.

The general relation between the potential and the current is:
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with,

io = exchange current density

Co = concentration of oxidant at the electrode surface

Co* = concentration of oxidant in the bulk

CR = concentration of reductant at the electrode surface

F = Faradays constant

T = temperature

R = gas constant

a = reaction order

n = number of electrons involved

h = overpotential ( E - E0 )

When the concentration in the bulk is the same as at the electrode surface, Co=Co* and CR=CR*. This simplifies previous equation into:
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This equation is called the Butler-Volmer equation. It is applicable when the polarization depends only on the charge transfer kinetics.

Stirring will minimize diffusion effects and keep the assumptions of Co=Co* and CR=CR* valid.

When the overpotential is very small and the electrochemical system is at equilibrium, the expression for the charge transfer resistance changes into:
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From this equation the exchange current density can be calculated when Rct is known.

Diffusion

Diffusion can create an impedance known as the Warburg impedance. This impedance depends on the frequency of the potential perturbation. At high frequencies the Warburg impedance is small since diffusing reactants don't have to move very far. At low frequencies the reactants have to diffuse farther, thereby increasing the Warburg impedance.

The equation for the "infinite" Warburg impedance is:
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On a Nyquist plot the infinite Warburg impedance appears as a diagonal line with a slope of 0.5. On a Bode plot, the Warburg impedance exhibits a phase shift of 45°.

σ is the Warburg coefficient defined as:
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In which,

ω = radial frequency

DO = diffusion coefficient of the oxidant

DR = diffusion coefficient of the reductant

A = surface area of the electrode

n = number of electrons transferred

C* = bulk concentration of the diffusing species (moles/cm3)

This form of the Warburg impedance is only valid if the diffusion layer has an infinite thickness. Quite often this is not the case. If the diffusion layer is bounded, the impedance at lower frequencies no longer obeys the equation above. Instead, we get the form:
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with,

δ = Nernst diffusion layer thickness

D = an average value of the diffusion coefficients of the diffusing species

This more general equation is called the "finite" Warburg. For high frequencies where ω approaches infinity, or for an infinite thickness of the diffusion layer, the above equation  simplifies to the infinite Warburg impedance.

Constant Phase Element 

Capacitors in EIS experiments often do not behave ideally. Instead, they act like a constant phase element (CPE) as defined below.

The impedance of a capacitor has the form:
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When this equation describes a capacitor, the constant A = 1/C (the inverse of the capacitance) and the exponent α = 1. For a constant phase element, the exponent  is less than one.

The "double layer capacitor" on real cells often behaves like a CPE instead of like like a capacitor. Several theories have been proposed to account for the non-ideal behavior of the double layer but none has been universally accepted. 

Virtual Inductor

The impedance of an electrochemical cell can also appear to be inductive. Some authors have ascribed inductive behavior to adsorbed reactants. Both the adsorption process and the electrochemical reaction are potential dependent. The net result of these dependencies can be an inductive phase shift in the cell current .

Common Equivalent Circuit Models

In the following section we show some common equivalent circuits models. These models can be used to interpret simple EIS data.

To elements used in the following equivalent circuits are presented in Table 2-2. Equations for both the admittance and impedance are given for each element.

Table 2

Circuit Elements Used in the Models
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Model #1 -- A Purely Capacitive Coating 

A metal covered with an undamaged coating generally has a very high impedance. The equivalent circuit for such a situation is in Figure 7.

Figure 7
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The model includes a resistor (due primarily to the electrolyte) and the coating capacitance in series.

A Nyquist plot for this model is shown in figure 8. In making this plot, the following values were assigned:

R = 500  (a bit high but realistic for a poorly conductive solution)

C = 200 pF (realistic for a 1 cm2 sample, a 25 µm coating, and er = 6 )

Fi = 0.1 Hz (lowest scan frequency -- a bit higher than typical)

Ff = 100 kHz (highest scan frequency)

Figure 8
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The value of the capacitance cannot be determined from the Nyquist plot. It can be determined by a curve fit or from an examination of the data points. Notice that the intercept of the curve with the real axis gives an estimate of the solution resistance.

The highest impedance on this graph is close to 1010 Ohm . This is close to the limit of measurement of most EIS systems.

The same data are shown in a Bode plot in Figure 9. Notice that the capacitance can be estimated from the graph but the solution resistance value does not appear on the chart. Even at 100 kHz, the impedance of the coating is higher than the solution resistance.

Figure 9
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Model #2 -- Randles Cell

The Randles cell is one of the simplest and most common cell models. It includes a solution resistance, a double layer capacitor and a charge transfer or polarization resistance. In addition to being a useful model in its own right, the Randles cell model is often the starting point for other more complex models.

The equivalent circuit for the Randles cell is shown in Figure10. The double layer capacity is in parallel with the impedance due to the charge transfer reaction.

Figure 10

[image: image35.png]Randles Cell Schematic Diagram
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Figure 11 is the Nyquist plot for a typical Randles cell. The parameters in this plot were calculated assuming a 1 cm2 electrode undergoing uniform corrosion at a rate of 1 mm/year. Reasonable assumptions were made for the b coefficients, metal density and equivalent weight. The polarization resistance under these conditions calculated out to 250 . A capacitance of 40 µF/cm2 and a solution resistance of 20  were also assumed.

Figure 11
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The Nyquist plot for a Randles cell is always a semicircle. The solution resistance can found by reading the real axis value at the high frequency intercept. This is the intercept near the origin of the plot. Remember this plot was generated assuming that Rs = 20 Ohm and Rp= 250 Ohm.

The real axis value at the other (low frequency) intercept is the sum of the polarization resistance and the solution resistance. The diameter of the semicircle is therefore equal to the polarization resistance (in this case 250 Ohm).

Figure 12 is the Bode plot for the same cell. The solution resistance and the sum of the solution resistance and the polarization resistance can be read from the magnitude plot. The phase angle does not reach 90° as it would for a pure capacitive impedance. If the values for Rs and Rp were more widely separated the phase would approach 90°.

Figure 12
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Model #3 -- Mixed Kinetic and Diffusion Control

First consider a cell where semi-infinite diffusion is the rate determining step, with a series solution resistance as the only other cell impedance.

A Nyquist plot for this cell is shown in Figure13. Rs was assumed to be 20 Ohm. The Warburg coefficient calculated to be about 120 sec-1/2 at room temperature for a two electron transfer, diffusion of a single species with a bulk concentration of 100 µM and a typical diffusion coefficient of 1.6 x10-5 cm2/sec.     Notice that the Warburg Impedance appears as a straight line with a slope of 45°.

Figure 13
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Adding a double layer capacitance and a charge transfer impedance, we get the equivalent circuit in Figure 14

Figure 14

[image: image40.png]Equivalent Circuit with Mixed Kinetic and Charge Transfer Control





This circuit models a cell where polarization is due to a combination of kinetic and diffusion processes. The Nyquist plot for this circuit is shown in Figure 2-20. As in the above example, the Warburg coefficient is assumed to be  about 150 W sec-1/2. Other assumptions: Rs = 20 , Rct = 250 , and Cdl = 40 µF.

Figure 15
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The Bode plot for the same data is shown in Figure16. The lower frequency limit was moved down to 1mHz to better illustrate the differences in the slope of the magnitude and in the phase between the capacitor and the Warburg impedance. Note that the phase approaches 45° at low frequency.

Figure 16
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Extracting Model Parameters from Data

Modeling Overview

EIS data is generally analyzed in terms of an equivalent circuit model. The analyst tries to find a model whose impedance matches the measured data.

The type of electrical components in the model and their interconnections controls the shape of the model's impedance spectrum. The model's parameters (i.e. the resistance value of a resistor) controls the size of each feature in the spectrum. Both these factors effect the degree to which the model's impedance spectrum matches a measured EIS spectrum.

In a physical model, each of the model's components is postulated to come from a physical process in the electrochemical cell. All of the models discussed earlier in this chapter are physical models. The choice of which physical model applies to a given cell is made from knowledge of the cell's physical characteristics. Experienced EIS analysts use the shape of a cell's EIS spectrum to help choose among possible physical models for that cell.  For an excellent discussion on fitting a physical model to your EIS data, see the Application Note on Equivalent Circuit Modeling.

Models can also be partially or completely empirical. The circuit components in this type of model are not assigned to physical processes in the cell. The model is chosen to given the best possible match between the model's impedance and the measured impedance.

An empirical model can be constructed by successively subtracting component impedances from a spectrum. If the subtraction of an impedance simplifies the spectrum, the component is added to the model, and the next component impedance is subtracted from the simplified spectrum. This process ends when the spectrum is completely gone (Z=0).

As we shall see, physical models are generally preferable to empirical models.

Non-linear Least Squares Fitting

Modern EIS analysis uses a computer to find the model parameters that cause the best agreement between a model's impedance spectrum and a measured spectrum. For most EIS data analysis software, a non-linear least squares fitting (NLLS) Levenberg-Marquardt algorithm is used.

NLLS starts with initial estimates for all the model's parameters which must be provided by the user. Starting from this initial point, the algorithm makes changes in several or all of the parameter values and evaluates the resulting fit. If the change improves the fit, the new parameter value is accepted. If the change worsens the fit, the old parameter value is retained. Next a different parameter value is changed and the test is repeated. Each trial with new values is called an iteration. Iterations continue until the goodness of fit exceeds an acceptance criterion, or until the number of iterations reaches a limit.

NLLS algorithms are not perfect. In some cases they do not converge on a useful fit. This can be the result of several factors including:

· An incorrect model for the data set being fitted.

· Poor estimates for the initial values.

· Noise

In addition, the fit from an NLLS algorithm can look poor when the fit's spectrum is superimposed on the data spectrum. It appears as though the fit ignores a region in the data. To a certain extent this is what happens. The NLLS algorithm optimizes the fit over the entire spectrum. It does not care if the fit looks poor over a small section of the spectrum.

Uniqueness of Models

The impedance spectrum shown in Figure 17 shows two clearly defined time constants.

Figure 17
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This spectrum can be modeled by any of the equivalent circuits shown in Figure18

Figure 18

[image: image44.png]Equivalent Circuit Models with Two Time Constants





As you can see, there is not a unique equivalent circuit that describes the spectrum. You cannot assume that an equivalent circuit that produces a good fit to a data set represents an accurate physical model of the cell.

Even physical models are suspect in this regard. Whenever possible, the physical model should be verified before it is used. One way to verify the model is to alter a single cell component (for example increase a paint layer thickness) and see if you get the expected changes in the impedance spectrum.

Empirical models should be treated with even more caution. You can always get a good looking fit by adding lots of circuit elements to a model. Unfortunately, these elements will have little relevance to the cell processes that you are trying to study. Drawing conclusions based on changes in these elements is especially dangerous. Empirical models should therefore use the fewest elements possible.
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